eRHIC – Future Electron-Ion Collider at BNL

V.Ptitsyn C-AD, BNL

What is eRHIC?

Relativistic Heavy Ion Collider + Electron accelerator

A high energy, high intensity polarized electron/positron beam facility could be built at BNL to provide collisions with the existing heavy ion and polarized proton beam.

To probe **fundamental aspects of QCD**

eRHIC Scope

Center mass energy range: 30-100 Gev

Advantages of collider

- Polarized DIS in past only in fixed target mode
- With collider:

 Higher Center of Mass energies
 reachable.
 - Better angular resolution between beam and target fragments

Goal luminosities:

- in 10^{32} 10^{34} cm⁻²s⁻¹ range for e-p collisions
- in 10³⁰ 10³² cm⁻²s⁻¹ range for e-Au collisions

How eRHIC can be realized?

Two main design options:

Linac-ring:
 RHIC

Ring-ring design option

The e-ring design development led by MIT-Bates. Technology similar to used at B-factories.

- The electron ring of 1/3 of the RHIC ion ring circumference
- Full energy injection using polarized electron source and 10 GeV energy linac.
- e-ion collisions in one interaction point.
 (Parallel mode : Ion-ion collisions in IP6 and IP8 at the same time are possible.)
- Longitudinal polarization produced by local spin rotators in interaction regions.
- Present design luminosities (for high energy setup):
 - e-p: 4.4 10³² cm⁻²s⁻¹
 - e-Au: 4.4 10³⁰ cm⁻²s⁻¹
 - e-He³: 3.1 10³² cm⁻²s⁻¹

Linac-ring design

Design being developed at BNL

- Electron beam is transported to collision point(s) directly from superconducting energy recovery linac (ERL).
- No beam-beam limitation for electron beam (the beam is used once!).
- No prohibited energy areas for the polarization.
- No spin rotators needed.
- e-p luminosity >10³³ cm⁻²s⁻¹ possible
- But no straightforward way to get polarized positrons

Luminosity for different options

Linac-Ring:

$$L = \gamma_i f_c N_i \frac{\xi_i Z_i}{\beta_i^* r_i}$$

No electron beam-beam limit on ion current.

Luminosity is defined by ion beam parameters.

IR design allows for round beams at the collision point.

• Ring-ring:

$$L = f_c \frac{\pi \gamma_i \gamma_e}{r_i r_e} \xi_{xi} \xi_{ye} \sigma'_{xi} \sigma'_{ye} \frac{(1+K)^2}{K}$$

Limitation from IR design (septum magnet aperture) leads to elliptical beam (vertical to horizontal beam size ratio: K=1/2) and the limit on σ'_{xi} Electron beam-beam limit (ξ_e < 0.08) prevents proton intensity more than 1e11 p/bunch

Luminosity versus proton beam-beam parameter

Calculations for 360 bunch mode and 250 Gev(p) x 10 Gev(e) setup

Marks show locations on the luminosity lines where electron current reaches 0.5A, which is presently nominal design current for both options.

In parallel mode (1 e-p + 2 p-p collision points): $\xi_p \sim 0.0065$; In dedicated mode (only e-p collision): maximum $\xi_p \sim 0.018$;

Major R&D issues

• Ring-ring:

• The accommodation of synchrotron radiation power load on vacuum chamber. (To go beyond 5.e32 cm⁻²s⁻¹ luminosity).

• Linac-ring:

- High current polarized electron source
- Energy recovery technology for high energy and high current beams

• Ion ring:

- Beam cooling techniques development (electron, stochastic).
- Increasing total current (ions per bunch and number of bunches)
- Polarized He³ production and acceleration

Last notes

- Two design options for eRHIC are under development: ring-ring and linac-ring.
 - **S** Zero-degree design has been produced (ZDR, 2004).
 - **Present development is towards more detailed conceptual design report.**
- At similar level of electron beam intensities the linac-ring design provides higher luminosity, but requires significant development for polarized electron source.
- Ring-ring design is at present level of accelerator technology, but e-p luminosity of 1.e33 cm⁻²s⁻¹ is very difficult to achieve.
- On present schedule the operation would start at 2016-2017.